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O N  T H E  U S E  O F  C O M P O S I T E  G R I D  S C H E M E S  
I N  C O M P U T A T I O N A L  A E R O D Y N A M I C S  

Joseph L. Steger and John A.  Benek 

ABSTRACT 
In finite difference flow field simulations, the use of a single well-ordered body 

conforming curvilinear mesh can lead to  efficient solution procedures. However, it is 
generally impractical to  build a single grid of this type for complex three dimensional 
aircraft configurations. As a result, a trend in computational aerodynamics has 
been toward the use of composite grids. Composite grids use more than one grid to 
mesh an overall configuration with each individual subgrid of the system patched 
or overset together. Because each individual subgrid in the system is well-ordered, 
the overall grid is suitable for efficient finite difference solution using vectorized or 
multitasking computers. Some of the advantages and difficulties of using various 
composite grid schemes are reviewed in this paper. 

I N T R O D U C T I O N  

Over the last decades, efficient and sophisticated finite difference schemes have 
evolved for treating complex flow fields about relatively simple aerodynamic con- 
figurations by generally using curvilinear body conforming grids. These procedures 
are now being extended to more complex shapes through the use of composite grid 
schemes. In such a domain decomposition scheme the field is meshed by using a 
set of interconnected simple grids that make up a larger composite grid. Grids 
are either patched or overset together to form a composite grid capable of treating 
complex geometries. 

In some ways a composite mesh finite difference scheme assumes some of the 
characteristics of a finite element scheme that uses a few large powerful eiernents in 
which each element is itself discretized. This process is still in its infancy, and not 
all of the ways of connecting the composite grids have been explored. In this paper 
we will briefly review some of the composite grid approaches used in aerodynamic 
applications. 
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B A C K G R O U N D  

Aerodynamic simulation has been undertaken in order to provide understanding 
of complex flows and to provide design inputs. However, the simulation of aerody- 
namic flows has been challenging because of two phenomena: multiple length scales 
and nonlinearity. In most aerodynamic flows the Reynolds number is quite high and 
viscosity is effective only in a small region near the wall where it moderates the no- 
slip boundary condition. This feature alone induces two length scales, a thin inner 
viscous region which must be resolved along with an outer essentially inviscid flow 
region. Consequently, two approaches to simulating aerodynamic flows have evolved 
- either solve the Euler and Navier Stokes equations everywhere (in which case the 
grids must be constructed to  resolve the viscous layer), or solve special approximate 
equations in regions where they are valid, such as boundary layer and potential flow 
equations. The other challenging aspect, equation nonlinearity, characterizes shock 
waves, vortex breakdown and burst, buffet, buzz, and stalling. Because of such 
phenomena, even flow about a relatively simple configuration can be so complex 
that its simulation remains a major objective of computational aerodynamics. 

Finite difference methods have been developed to solve Euler and Navier-Stokes 
equations as well as potential and boundary layer equations. These methods have 
proven to  be quite satisfactory insofar that  wave propagation, viscous layers, shock 
waves, and unsteady motions can all be treated. The finite difference method is 
flexible and previous developments in aerodynamic theory such as perturbation 
analysis and various approximate techniques can be incorporated into its use. Be- 
cause relatively simple configurations can cause interesting physical effects, the em- 
phasis has been on their simulation. For a simple configuration, a finite difference 
simulation can often be carried out on a single well-ordered grid that can be body- 
conforming as well as clustered to flow field action regions. This is advantageous 
because such meshes allow the use of efficient numerical solution procedures and 
computer architectures. For example, on a well-ordered mesh implicit alternating 
direction methods can be used to approximately invert large sparse matrices and 
these methods readily adapt to  vectorized computer processors. 

The prediction of flow about more complex aerodynamic configurations is cur- 
rently carried out using very simplified governing flow field equations or boundary 
condition treatments. For example, panel methods [ 1,2] for predicting the flow 
about highly complex geometries solve linear potential flow equations. In this ap- 
proach, viscous and vortical effects are neglected or modeled and are included as 
boundary conditions. Flow about complex configurations has also been simulated 
using finite difference schemes for transonic small-disturbance potential equations 
and boundary conditions [3,4]. But as finite difference procedures for solving the 
more exact equations become more reliable, efficient, and versatile, and as comput- 
ing becomes more cost effective, there is an interest in extending these more exact 
procedures toward complex geometries. 
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In Fig. 1 are shown three basic grid treatments for meshing a simple body - a 
rectangular or Cartesian-like grid, a curvilinear body-conforming grid, and an ir- 
regular triangularized grid. Each grid type has advantages and disadvantages. The 
rectangular grid is well-ordered, trivial to generate, readily allows accurate interior 
difference approximations, and the representation of a difference approximation re- 
quires the minimum work per step. However, boundary representation requires 
special logic and is generally of poor accuracy, and the grid does not cluster to  
efficiently resolve viscous boundary layers on curved boundaries. The curvilinear 
body-conforming mesh is also well-ordered, allows higher order difference approx- 
imations, permits simple and accurate boundary difference approximations, and 
can be clustered to  gradient regions. It is especially well suited for viscous bound- 
ary layer approximation. However, the governing equations are more complex to  
difference on a curvilinear grid (although body conforming grids often permit use 
of additional approximations), and grid generation, while not difficult for simple 
bodies, is no longer trivial. The triangularized mesh has good grid concentration 
(i.e. triangles can be readily deleted in smooth gradient regions) and the shape 
of the boundary curve is readily conformed to. However, such a mesh is poorly 
ordered and is therefore less amenable to the use of certain algorithms (e.g. ADI) 
and vectorized computers. Grid generation can be relatively straightforward, but 
is not trivial, and high order accuracy appears more difficult to maintain unless 
direct inversion routines are used to solve the difference approximations. Moreover, 
triangular meshes are a poor choice for resolving viscous boundary layers in two di- 
mensions because either highly acute or too many triangles are required. (In three 
dimensions a grid formed by triangular discretization along the surface and by lines 
radiating outward from the surface would nicely resolve viscous boundary layers, 
see Fig. 2. Such grids appear to have good generality and are ”semi well-ordered” 
for reasonable efficiency.) 

For a simple body shape, the use of a single body-conforming curvilinear mesh 
leads to  the most eficient solution procedure. However, for more complex shapes, 
the generation of a body conforming well-clustered curvilinear grid that is not overly 
skewed and has smooth variation can often be quite difficult. In particular, it is 
generally impractical to build a single grid of this type for complex three dimensional 
configurations. Of course, by judiciously introducing cuts in the grid, some fairly 
complex bodies can be meshed with a single grid; the sketch shown in Fig. 3 
illustrates this possiblility. Single grids can also be quite effective for certain complex 
configurations in which the body shape has a smooth variation and the main flow 
is supersonic. For supersonic outflow, a simple outflow boundary condition can be 
used, allowing use of a grid chopped at the back. Cross sections of such a grid that 
was generated for space shuttle simulations are shown in Fig. 4.  

To treat complex geometries by the finite difference (or finite element) method, 
a code builder can: 1) revert to grid systems such as the irregular triangularized 
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mesh systems, 2) form a composite grid by patching or oversetting well-ordered 
grids together, or, 3) use a composite grid in which only some of the grid segments 
are well-ordered. This paper will only discuss aspects of composite grids in which 
the overall configuration is meshed by either patching or oversetting well-ordered 
grids together. 

C O M P O S I T E  G R I D  S C H E M E S  

Composite grids use more than one grid to mesh an overall configuration with 
each individual grid of the system patched together or overset. The sketches shown 
in Fig. 5 illustrate several simple patched and overset grid configurations in two 
dimensions for a typical two body problem. As the sketches illustrate, patched grids 
are individual meshes that are joined together at some common interface surface. 
With overset grids the meshes are simply superimposed or partially superimposed to 
cover the region of interest, and are not joined together in any special way, although 
they can be. 

The use of a set of patched or overset grids to form a larger composite grid carries 
the discretization process one step further. In a sense a composite mesh finite 
difference process assumes some of the characteristics of a finite element scheme 
that for the most part uses a few large powerful elements in which each element 
is itself discretized. In this discretization process each, or nearly each, individual 
grid in the system is well-ordered and is thus suitable for efficient finite difference 
solution using vectorized computers and any available single grid code. (The small 
patched triangularized segment shown in Fig. 5 is not well-ordered.) The problem 
with a composite grid scheme is the difficulty of accounting for all the possible 
communications between meshes and the difficulty of supplying interface boundary 
data without degrading numerical accuracy or convergence. 

Limited experience with both patched and overset grids has not shown which 
method is preferable. An optimum method will likely combine both patched and 
overset grids and perhaps small grid segments that  are not well-ordered, and such 
grids have already been tried [5,6]. Both patched and overset grid schemes necessi- 
tate extensive bookkeeping procedures. One of the drawbacks of the patched grid 
method is a grid generation problem that is still relatively difficult because various 
interfaces have to  be defined and grids with both inner and outer boundary surfaces 
must be generated. Drawbacks to overset grids include interpolation of data points 
along an irregular boundary and bookkeeping which can be especially complex if 
more than two levels of overset grids intersect each other. 

With composite grids the possibility exists of using different computers to update 
the results on each grid if a multitasking computer processor is available, but this 
is feasible only if the amount of work on each grid or subdivided grid is roughly 
the same [7]. Likewise, on machines which have a small but high speed memory 
and a large but low speed peripheral memory it is feasible to keep only the memory 
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requirements for a given grid internal to the small fast memory. Of course, one can 
partition a single grid scheme for multitasking and memory can be rolled back and 
forth, but with composite grid schemes this data management is naturally built into 
the code. 

To help clarify some of the following discussion, Figs. 6 - 7 show published inviscid 
flow results obtained using patched and overset meshes in two dimensions. Both 
grids and flow contour levels are shown. The supersonic biplane results of Hessenius 
and Rai IS] were computed using a patched grid method in which a flux balance 
interface scheme is used at grid boundaries to ensure flow conservation. Although 
in this method meshes must share a common boundary, grid lines need not have 
a common slope or join together. The transonic inviscid flow results of Dougherty 
et a1 [9] for an airfoil and flap were computed using overset grids. Only simple 
interpolation is used to interface the mesh boundaries, taking boundary value data 
from the underlying grid. Figure 7c shows the nearby interpolation points used to 
update the outer boundary of the flap grid (open symbols) and grid points which 
are excluded from the calculation (filled symbols). 

1) Patched Grid Schemes 

A patched grid is perhaps the most natural composite grid approach. The domain 
is decomposed into a finite number of subdomains or elements and each element 
is meshed separately. The grids thus share common boundary interfaces. Such an 
approach can be used to construct simpler or more efficient grids, to treat complex 
geometries, or to better resolve flow changes. 

Compared to a single mesh code about a simple configuration, a patched grid 
code differs in three major ways: 1) the grid generation process must be carried out 
for a partitioned grid, 2) multiple grids must be interfaced and managed, and 3) 
additional numerical stability and accuracy requirements are encountered at subgrid 
interface boundaries. 

On a patched grid, the overall domain is subdivided and a mesh must be supplied 
for each subgrid. Because the partitioning results in common boundaries, each 
subgrid must be generated subject to specified boundary constraints. In generating 
a subgrid the user must specify either the interface boundary surface grid point 
distribution, or some suitable constraints that  restrict boundary grid points to the 
interface. Care must be taken in subdividing into subgrids so that a specified 
boundary surface distribution on one face does not cause poorly clustered or highly 
skewed grid lines to result on another boundary surface. 

Once the domain is partitioned using subgrids, a means of bookkeeping and 
data management must be supplied to  indicate how a subgrid fares relative to its 
neighbors and other boundaries. At  any given subgrid boundary the possibility 
exists that this boundary is in common with another subgrid interface or that it is 

5 



a body boundary, a free stream boundary, an inflow boundary, etc., or even some 
combination of these. All of these possibilities must be allowed in the bookkeeping 
scheme. It is frequently the case that not all of the grids fit into main memory, so 
a means of collecting needed interface boundary data that must be supplied from 
another subgrid no longer in memory must also be provided. 

One way to supply interface boundary data is by interpolating the interior solu- 
tion from the grids to either side. Because the subgrids likely join discontinuously 
as sketched in Fig. 8a, the interpolation process must be constructed with this in 
mind. One approach is to extrapolate for interface values from the grids to either 
side and to then average these values to obtain the interface boundary values. The 
averaging helps maintain numerical stability and permits signal propagation in both 
directions. Thus a value at point a in the sketch might be obtained by averaging 
the value obtained by extrapolating from the interior left grid with a value inter- 
polated from points b and c which are extrapolated from the right side grid. An 
improvement on this which avoids extrapolation and uses the governing equations 
is to have the grids overlap one point as sketched in Fig. 8b (this is as much an 
overset grid as it is a patched grid). However, this grid is much more difficult to 
generate as there are now two common interface surfaces. As Fig.8b helps show, 
the left grid boundary can now be fully supplied by interpolating only interior val- 
ues determined from difference equations along a line of the right-side grid. The 
right-side grid boundary can be obtained in similar fashion. 

Characteristic compatibility relations can also be used to provide interface bound- 
ary values. For a system of hyperbolic equations of the form 

a,Q + Aa,Q + Bd,Q = 0 

the eigenvalues and  eigenvectors of A or B can be used to obtain combinations of 
variables which can be properly differenced to  one side of an interface boundary. 
For example, in dealing with a boundary in 5, the eigenvectors X-'  of A can be 
used to  partition the equations as 

X - ' & Q  + dX- 'a ,Q  + X - ' B X X - ' a , Q  = 0 

where A is a diagonal matrix containing the eigenvalues of A .  On the left boundary, 
the portion of X-'a,Q with negative eigenvalues as coefficients can be differenced 
to  the right (i.e. forward differenced), while on a right boundary the portion of 
X-'a,Q with positive eigenvalues as coefficients can be differenced to the left (i.e. 
backward differenced). The remaining portion of the characteristic combination of 
variables, X - ' Q ,  must be supplied from the neighboring grid - either by interpola- 
tion or by characteristic relations from that side. 

Conservatively differenced flow equations will lose this property at the interface 
boundary if interpolation or characteristic differencing supplies the interface bound- 
ary values. Depending on the location of the interface boundary this may not be a 
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problem, but, if a captured shock wave passes through the boundary, some loss of 
accuracy may be expected. For this reason special interface boundary conditions 
have been developed so that flux balancing is maintained between grids ( see the 
review by M. M. Rai \ IO]) .  

For the most part it is difficult to treat the interface boundary updating procedure 
in a fully implicit way. For example, if the characteristic compatibility relations are 
used to update the interface values, the number of one-sided difference equations 
with proper eigenvalues could be implicitly updated with the interior update of the 
grid. The interface values that depend on the adjacent grid, however, are most 
likely going to be lagged in iteration or time. As a result of lagging these values, 
the stability properties of any implicit interior differencing scheme will be degraded 
somewhat, perhaps enough to require an iterative correction process for the interface 
boundary values. 

As described in Refs. [lo-191, patched grids have been used to  resolve gradi- 
ents, treat moving boundaries, and treat complex geometries. As an example of 
the progress achieved with patched grids, recently obtained results about a moving 
rotor-stator combination are reproduced from Ref.[ 191. The two dimensional invis- 
cid flow calculation used the two simple grids shown in Fig. 9. Supersonic inflow 
boundaries were specified on the left boundary, and, to represent a cascade row, 
periodicity conditions were imposed on the lower and upper boundaries. Figures 
10a - 1Oc show pressure contours for the rotor-stator at M ,  = 1.5. The flow is 
observed from the forward plunging rotor which therefore appears to  be stationary 
while the stator appears to be moving. An effective angle of attack is induced by 
the downward plunge equal to a Mach number of 0.1, and a cyclic time-dependent 
flow is induced on the stator row. 

2) Overset Grid Schemes 

In the overset mesh technique individual grids are superimposed to  form a com- 
posite grid. Usually there is a major grid which might be a simple rectangular grid 
stretched over the entire field or a grid generated about a dominant boundary or 
body surface. Minor grids are generated about remaining portions of the body- 
configuration or any other special feature such as an intense vorticity region. The 
minor grids are used to  resolve features of the geometry or flow that are not ade- 
quately resolved by the major grid. They are generated somewhat independently of 
the major grid and are overset on the major grid without requiring mesh boundaries 
to  join in any special way. (The major grid could itself be a composite grid.) 

The two dimensional airfoil-flap combination shown in figure 11 illustrates a typ- 
ical overset grid scheme. Body conforming meshes are independently generated 
about both the main airfoil and the flap. The grid generated for the flap is a minor 
grid and so it is not carried out to the far field (thus the mesh generation is not en- 
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tirely independent). The two grids are not joined at a common boundary and so are 
connected by interpolating data from one grid to another. Figure 12 illustrates the 
typical way in which data are transferred from one grid to another. Here data from 
the major grid are interpolated to supply outer boundary data to the minor flap 
grid. (If a characteristic outflow differencing scheme is used at  the outer boundary, 
then only unknown characteristic data must be interpolated.) Hence the presence 
of the main airfoil is properly imposed on the flap mesh. In order for the major grid 
solution to account for the flap, points of the major grid are blanked out within 
some neighborhood of the flap. On the fringes of this blanked-out region, data from 
the minor grid solution are interpolated to serve as interior boundary data for the 
major grid. Thus, the effect of the flap is imposed upon the main airfoil. Overall 
the effect of one grid is imposed upon the other by interpolating boundary data 
between them, and often this process is carried on as an iterative solution process 
proceeds on each grid. 

With the exception of some additional data management, the only changes re- 
quired to the flow solver account for holes or interior boundaries in the grid and 
account for boundary data transferred from another grid rather than from the usual 
boundary condition routines. For example, for the simple airfoil-flap problem all of 
the minor grid outer boundary data is interpolated from the major grid solution, 
and not from the usual far field boundary condition routine. In time accurate or 
time-like iterative solution routines, accounting for a hole can be very straightfor- 
ward. The simplest approach is to simply sweep through the entire grid, ignoring 
the hole, and to  use a flag that zeroes the At or relaxation parameter a t  a hole or 
hole-boundary point. Thus no update of the variables takes place within a hole, but 
the later hole boundary update process ensures that the regular interior grid points 
sense the result of the other grid solution. Overall the actual flow solver routine is 
not appreciably complicated by using overset grids. 

The data management process and the best ways of doing the interpolation pro- 
cedures are more involved and have not yet been extensively researched. As far as 
the interpolation procedure is concerned, issues of efficiency, accuracy and stability 
remain. The interpolation of grid boundaries would generally be undertaken as an 
explicit operation at the end of each time step or iterative update for interior values 
of the grid. Depending on the grid, certain fringes points on a boundary may be 
updated more by an extrapolation process than by an interpolation process and this 
can cause numerical instability or slow the iterative convergence. However, if suf- 
ficient grid overlap exists, a simple interpolation process usually results in a stable 
procedure. Finally, interpolation procedures will not generally ensure conservation 
of flux quantities, and inaccuracy in shock capturing may or may not occur depend- 
ing on the location of the updated boundaries and the change of spatial resolution 
across the boundary. 

There are other complications and ramifications to using overset grids. For ex- 
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ample, as shown in Fig. 7 the outer boundary of the flap grid also intersects the 
airfoil, so additional logic is needed to put a hole in the minor grid. This presents no 
additional problems to the flow solver, but the bookkeeping or data management 
becomes somewhat more involved, and the automatic routine that identifies and 
manages the grid interconnections becomes more complex. It is also clear that as 
these two bodies are drawn closer and closer together the grid spacing must shrink 
to resolve a small gap - so one grid cannot be generated truly independent of an- 
other. (In this regard, the mesh spacings should be kept compatible so that the 
interpolation process is accurate.) 

Because overset grids may have common regions of overlap, alternate ways of 
transferring data  are possible. In the procedure just described, the transfer of 
information from one grid to another is by means of boundary conditions (outer 
boundary and hole). This is computationally efficient insofar that only a small 
subset of data  is involved in this process. However, because the grids generally 
overlap, the effect of one grid solution on the other could also be imposed over a 
region by means of a forcing function. For example, an equation of the type 

with L(Q) a spatial differencing operator, can be altered with a forcing function 

where Q" represents Q interpolated from an overset grid. In regions where the grids 
overlap, the value Q on the present grid and the value of Q" of the overset grid are 
both available. In these regions a can be chosen greater than 0 and Q" can be 
interpolated to  the same grid point location as Q to be used in the forcing function. 
If Q" represents an inaccurate result or if the grids do not overlap, cy is set to  0. 

Overset grids have been used in flow applications [20-301 to save grid points, 
to resolve gradients, to treat complex geometries, and to  treat moving boundaries. 
Recently obtained results about a generic wing-body-tail [30] and a two dimensional 
unsteady separation problem [9] are shown in Figs 13-14 to illustrate the progress 
with overset grids. 

The wing-body-tail configuration consists of an ogive-cylinder fuselage and unta- 
pered swept wings. A main hemispherical-like grid was placed around the fuselage 
and minor cylindrical-like grids were placed about the wing and the tail. Figure 
13a shows the configuration, surface grid point distribution, and outer boundaries 
of the wing and tail minor grids. Another outermost grid was used to resolve the 
solution from the near field to either the far field or to wind tunnel wall boundaries. 
Comparisons of computed results and experimental data  are shown in Fig. 13b for 
a free stream Mach number of 0.9 and an angle of attack of 2 degrees. 
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The grids and computed Mach contours for the two body separation case are 
shown in Fig. 14. Here the small body with its minor grid pitches while it translates 
upward in time. The frames of Fig. 14 show Mach contours and grid positions at  
two times during the unsteady motion. As the bodies move with respect to  each 
other, shock waves form and are transmitted through the overset grid boundaries 
without apparent difficulty. 

C 0 M P  U T A T  I O  N A L A S P E C T S  

Compared to  single mesh codes for aerodynamic simulation, composite mesh 
computer codes contain considerably more computationally related instructions. 
Specifically much of the code entails data  management features, pointer arrays, 
grid interfacing routines and so on. 

The success of the composite mesh code can depend as much on what can be 
termed computational geometry features as it depends on the algorithm used to 
solve the flow field equations on a given grid. For example, in both patched grid 
schemes and overset grid schemes interpolation is generally needed to  update bound- 
ary points, and interpolation requires routines to seek out nearest points (or cells) 
from which to interpolate. Especially in the case of overset grids, finding these 
points can be costly and prone to error. Every point on the surface or field can 
be tested to find the one nearest the point to be interpolated, but this near-point 
algorithm is computationally expensive if the data bases are large. Morever, as Fig. 
15 indicates, for fine skewed grids the nearest point (point a )  is not necessarily the 
best point to  use for interpolation. For the grid segment shown, the point 6 (or cell 
6cde)  is best for interpolation. 

As an example of one of the computational procedures that must be developed 
to use overset grids, we illustrate the steps taken to  construct a hole in a grid which 
is caused by a body overset onto another grid. In general it is necessary to identify 
and flag all points that lie within the body boundary, say the < = 0 grid surface, so 
that they can be excluded from the flow field calculation. To ensure that there is 
no ambiguity, a surface containing the body boundary can be used to define a hole, 
and, for body-conforming coordinates, this surface can be taken as any level surface 
above the body boundary, say < = 2A< (see Fig. 16). The following algorithm was 
developed to  locate hole points within this boundary (Figs. 16a to 16d help define 
the notation described below). 

Hole Point Algorit hrn 
Setup:  1) Define the boundary surface, C, which will define the hole. This surface 
may be defined by all the grid points of the chosen <-level surface, or for economy 
reasons, some subset of these points, perhaps every other one. 2) Construct outward 
normals, N ,  at each point defining the <-level surface, C. 3) Determine a temporary 
origin within the (-level surface, say Po, which may be located within the surface 
by simply averaging the points defining C. 4) Define a ball about the surface whose 

-+ 
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radius R,,, is the maximum distance from Pi, to any point on C. 
Test: 5) Test the magnitude of ?, the position vector from Po to any point P of 
the grid being tested. If 2 R,,,, the point P lies outside the ball and hence 
cannot be a hole point. If < R,,,, then the point P may be a hole point and a 
most precise test is needed. 6) Search for the point P,, on C ,  which is closest to Y. 
Compute Zp - Rp where gp is the outward normal a t  the point P, on C closest to 
P ,  and &, is the position vector to P from Y,. If ip.  g p  2 0 , P is outside of C, if 
gP Rp < 0, P is inside of C and is a hole point. 

* * *  
Many of the problems encountered in constructing composite mesh schemes are 

encountered in other fields such as computer graphics and CAD/CAM. The area 
of computer science referred to  as computational geometry (c.f. 131,321) can be a 
source of ideas and algorithms. 

C O N C L U D I N G  R E M A R K S  

For simple configurations finite difference solution procedures using well-ordered, 
body-conforming curvilinear grids have proven quite efficient for simulating the 
nonlinear, multiscale equations of aerodynamics. These same procedures can be 
used to simulate flow about complex configurations by incorporating them into 
composite grid schemes. Such a composite grid can be entirely comprised either 
of well-ordered grid elements or combinations of well-ordered grid elements and 
randomly ordered elements. 

Although more complex than single grid schemes, composite grid approaches offer 
additional opportunities. For example, in composite mesh schemes it is somewhat 
natural to think of using simplified equations in isolated or specialized grids in which 
such approximations might be warranted. One possibility is to build a specialized 
Navier Stokes solver for a thin body conforming grid which is designed to resolve 
only the boundary layer - a sort of generalized boundary layer scheme. 

In many ways the development of composite grids will change the field of com- 
putational aerodynamics. In the past one or two practitioners could build a more 
or less specialized code to  treat all of the aspects of a particular nonlinear problem. 
Future composite grid codes will be larger, more complex, and perhaps menu driven 
from workstations. Hopefully they will be comprized of modular self-contained sub- 
codes that can quickly be altered to accommodate improved numerical algorithms 
as they evolve. 
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Figure 1. Sketches showing basic grid treatments for a simple body, a. rectan- 
gular or Cartesian, b. body conforming curvilinear, c. body conforming irregular 
triangularized. 

TRIANGULARIZED =\CONSTANT SURFACE 

Figure 2. Sketch showing semi-ordered "prismatic" grid in which < varies along 
outward radiating lines and each = constant plane is triangularized. 
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I CROSS SECTIONAL GRID 

Figure 3. Sketch illustrating the use of a single body conforming grid with cuts or 
webs inserted to give a single body surface. 
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Figure 4.  Use of a single body conforming mesh about the shuttle orbiter using an 
outflow boundary condition. a. Windward and leeward plane grid segments. 
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Figure 4 continued. Cross sectional views of curvilinear grid projected onto an 
z = constant plane. b. Near canopy location. c. Wing region. 
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Figure 5 .  Possible composite grid treatments of a multiple body combination using 
patched and overset grids. 
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Figure 6. Inviscid supersonic flow about a biplane computed using patched grids, 
M ,  = 1.5. a. Mach contours. b. Composite grid formed using four patches. 
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Figure 7.  Inviscid transonic flow about an airfoil flap combination using overset 
grids, M ,  = 0.7. a. Mach contours. 
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Figure 7 continued. b. Composite grid formed using two overset grids. c. Detail of 
minor grid showing points blanked out (filled 0 )  and points used to interpolate the 
outer boundary (open 0 ) .  
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Figure 8. Sketches showing the interface boundary of discontinuous grids. 

MOVING ZONE STATIONARY ZONE 

Figure 9. Two-zone patched grid for rotor-stator simulation. 
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Figure 10. Pressure contours of rotor-stator simulation at various times. 
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Figure 11. Overset grids for simple airfoil-flap arrangement. 
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Figure 12. Sketch illustrating transfer of information between overset grids. 

Figure 13. Overset grids and pressure distributions for a generic wing-body-tail 
configuration, M ,  = 0.9 and a = 2". a. Surface mesh and wing and tail outer 
boundary surfaces. 
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Figure 13 cont. b. Computed and experimental pressure distributions. 
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Figure 14. Overset grids and Mach contours at different times for an unsteady 
two-body separation, M ,  = 0.7. a. Time of 400 units. 
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Figure 14 continued. b. Time of 600 units. 
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Figure 15. Sketch showing situation in which nearest point, a, is not the best point 
to use for interpolation of point P. 
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Figure 16. Hole construction in two dimensions. a. Initial hole boundary defined 
by level curve, C. b. Constructions of outward normals to  curve, C. 
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Figure 16 continued. c. Temporary origin and construction of search ball or circle. 
d. Construction of position vector, zp, and dot product test. 
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